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ON THE ASYMPTOTIC STABILITY AND INSTABILITY OF THE ZERO SOLUTION OF A 
NON-AUTONOMOUS SYSTEM WITH RESPECT TO PART OF THE VARIABLES* 

A.S. ANDREXEV 

A non-autonomous set of differential equations is considered which allows 
of the existence of a set of differential equations limiting it. Theorems 
of the asymptotic stability and instability of the zero solution of such 
systems with respect to part of the variables are proved in the presence 
of Liapunov function with derivatives of constant sign. Sufficient 
conditions are obtained for the partial asymptotic stability of non- 
autonomous holonomic mechanical system subjected to the action of 
dissipative forces with total or partial dissipation. The problem of the 
asymptotic stability of the equilibrium of a heavy solid with a fixed 
point in a homogeneous gravitational field of variable intensity, and of 
stabilizing the axis of symmetry of a symmetric satellite perpendicular to 
the orbital plane of the latter, whose centre of mass remains at the 
libration points of the limited circular three-body problem, are considered 
as examples. 

1. Consider the set of differential equations 

5 = x (t, 3) i(X (t, 0) = 0) 

5 = (51, s,, - . -1 4 = (I/,, Y,, - * *, ym, z1* % * . *, zp) 

(m>O, P B 0, n = m +P) 

(1.1) 

The vector function X(t,s) is defined in the region I?' x r(R+ = IO, fen [, where r= 

{IIYII 000, IIzllC -t-m) ad Ilrll is some norm R”‘,ll~ll- B RP, II x II = 11 y I( + II z )I ), that satisfies 
in that region the conditions of z-continuability /l/ and conditions (A) from /2/. The latter 
ensures the existence and uniqueness of solutions of (l.l), the existence of functions 'p (t,z) 
limiting X (t, I), the reciprocal continuity of the solution of the input system (l.l), and of 
solutions of the limiting systems 

z' = cp (t, 5) (1.2) 

We shall also assume that the non-negative scalar function w(t,z)(W(t,O)~ 0) used below 
satisfies conditions (A). The limiting function for w(t,z) is denoted by o(t,z) /3/. 

We shall call (rp, 61) the limiting pair, if cp (t,r) and 61 (t,s) are limits for X (t,r) and 
rv(t,s) of one and the same sequence t,,+ +m. 

2. For each limiting pair (cp, o) we denote the set formed by the non-continuable solutions 
of system x' = cp(t,z) that lies in the whole of its range of definition on the set {w (t, r) = 

0, t E R’, x E r) by Al+ ((9, o)), and by M+ ({(cp, 0))) th e union M+ (cp, w) over all (q, 0). 

Theorem 2.1. Let us assume that: 1) the solution of (1.1) in some neighbourhood rl of 
the point z = 0 isboundedby z, 2) a y-positive definite function v(t,z), V(t,z)> V, (11 y/I) 
exists whose derivative by virtue of (1.1) is v' (t, I) < -W(t,s) < 0, and 3) for any limit- 
ing pair (cp, o) the set nf+(cp, o)C {z :I/ = 0). The zero solution of (1.1) is then asymptotically 
y-stable. 

Proof. Condition (2) implies that the zero solution of (1.1) is asymptotically stable 
/4/. Let 5 = z(t, &,, ~0) be a solution of (1.1) from the neighbourhood r(t,) of point x = 0 
so that sup (V(t,z) for ZE r (t)C r,) < V, (HI), when H2cH. By conditions (1) and (2) of 
the theorem, it is bounded for all t> t,. By Theorem 2.2. of /3/ the set of limiting points 
of iha solution Q'(Z(t, t,..r,)) is contained in M,+(((v,o))). But by condition (3) of the'theorem 

M*+ ({(cp, 0))) C (s : Y = 0). Hence g+ (2 (t, t,, x0)) C {z : y = O} and lim y (t. t,, z,,) = 0 as t + + CU. 

Definition. Let us define form some sequence t,+ -m and any c>O and t>O the 
limiting Set 11'(t,c), as the set of points sE r, for which the sequence x,-+x exists so that 
lim J' (t, + 1, x,,) = c as t, + A 05 and x,, -t x. 
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Theorem 2.2. Let US assume that: 1) the solutions of (1.1) in some neighbourhood of 
x=0 are bounded by z, 2) the y-positive definite function v (t. x) whose derivative by 
virtue of (1.1) is k’;‘(t,r)< -W(t,z),<O, and 3) for some sequence t,-t i 00 the limiting 
pair (cpO, 00) and the set N(t,c) are such that for any co> 0 the set iV(t,c,) n {~~(t,x) = 0) 
does not contain solutions of system x' = rpo(t,x). The zero solution of (1.1) is asymptotically 
y-stable, uniformly with respect to x0. 

Theorem 2.3. Let us assume that: 1) the solutions of (1.1) from some neighbourhood of 
x=0 are bounded by z, 2) a function V(t,x) exists that, in any arbitrarily small neighbour- 
hood of x = 0, takes positive values, is bounded in the region v (t, 5) > 0. and whose deriva- 
tive by virtue of (1.1) is v' ct. 5)<- w (t, 2) < 0, and 3) for some sequence f"++=J the 
limiting pair (cpO, oO) and the limiting set N(t,c) are such that for any c, > 0 the set IV (t. 

Co) n {oo(t,x) = 0) does not contain solutions of the system x' = qo(t, 5). The zero solution 
of (1.1) is then y-unstable. 

The proof of Theorems 2.2. and 2.3 is a modification of the proof of Theorems 3.1 and 
3.2 in /5/. Thus, when proving Theorem 2.2 we have shown that along any bounded solution 
x = x(t,t,,x,) of (1.11, the function v 07 x (t, t,, x3) 4 0, which according to /6/ implies the 

asymptotic y-stability, uniform with respect to x0. 
Suppose that the function V(t,x) satisfies the Lipschitz condition with respect to t and 

x on every compact K = [to, t, + Tl X rl (to > 0, T > 0, PI c I’). Then a function P (t, I) exists which 

is limiting for V(t,x) in the sense of uniform convergence on each compact K as t,* - + m /3i. 
We shall call (q,p, CL)) the limiting set, if simultaneously x (k + t, x) - cp U. I), v (t, + t. x) -+ 
p (t, x), W (t,, + t, 2.)- 0 (t, x) for some sequence t,+ +oo. 

Theorem 2.4. Let us assume that: 1) the solutions of (1.1) from some neighbourhood rl 
of the point I= 0 are uniformly bound by z, 2) a y-positive definite function V(t,s) exists 
that satisfies the Lipschitz condition with respect to t and x (and consequently, admits of 
an infinitely small higher limit), VI (II Y II ) -s v k 4 < v2 (II x II )7 whose derivative by virtue of 

(1.1) is r(t,x),< -W (t, I)<,<, and 3) for any limiting set (cp,P, o) the set {P (t, x) = C > 

0) n {o (t,x) = 0) does not contain solutions of system I' = v&x). The zero solution of (1.1) 
is then asymptotically y-stable. 

Proof. The theorem implies the uniform y-stability of the zero solution of (1.1) and, 
also, that solutions of (1.1) from r0 = V;l(V,(Hl))~ rl (H,(H) are bounded. By Theorem 

2.2 we obtain that along each solution of (1.1) from r, the function V(t, I (t. t,, x,,)) 1 0. The 

theorem will be proved, if we can show that v (t, x (t7 t,, x0)) - 0 uniformly with respect to 
t,E R+ and x,F rO. 

For this we first derive the following result. Let (r+~~,p~, oO) be an arbitrary limiting 
set. Then along every solution x =+((t, t,,xo), x,E r. of the system x*2= 'po(t,x) the function 

PO (t, 9 (t, to, x0)) 1 0. 
Repeating the reasoning of Theorem 3.3 of /3/, we obtain 

PO (t? @@t to, x0)) -po (kit x0) .< - 

From this it follows that the solution of system I' = rfo(t.x) is y-stable, and its solu- 
tions from roar@ bounded. 

The system that is limiting for x' = Cpo(t,x) is also limiting for (1.1) , as are functions 
limiting for P" (t, .r), and (oO (t, .c) are limiting for V (t,z) and w(t, x). Hence from condition 

(3) we have that, if (~p',p', 0') is the limiting set for ('pO,pO, w,), the set {p' (t, 5) = c0 > 
0) n {o’(t,z) = 0) does not contain solutions of system x' = cp'(i,x). From this and Theorem 

2.2. it follows that PO (t,lp (1, t,,x,J) 1 0. 
Let us now assume the contrary: V(t,z(t, t,,x,))+O as t++al non-uniformly with 

respect to t,e R+ and xOc rO, i.e. an eO> 0 exists such that for the sequence I";,- -k 00 

a sequence (tn, .t,), t, > 0, x,, F r. can be found for which V (t, + Z’,, s (t,. ~-- 7’,, t,,, x,)) : Ed. Then, 
evidently, for 1, t, .< t, + T, we have 

v (t, x (t, t*, xn)) ‘I e0 (2.11 

Using the compactness of rO, we select the subsequence (x*) so that xk-x0* =rO. The 
sequence (tic; cannot be bounded, since that would contradict the property 17(t.r(t,t,,xO*)) ! U 

of continuity of the solutions of (1.1) from the initial conditions and the continuity of 

L' (t, z). 
Let tk-- fM. We select {t,}C {th.) so as to have .Y (lj - 1, 1.) - ',',, (t, x), L' (tj + 1. .C) - 

PO (t, 5). W (tj C t, b)* Wg (t, Xi. The sequence xj(t) = r(tj +t,tj,~]) of the solution of ii.:: 
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convergest uniformly in t E [O, Tl (T > 0) to the solution s=$(t, 0, x*) of system ~.'=q~((t, 5). 
By virtue of (2.1) v (to -j-t, .r~ (t)) .> .sO when t E IO, T,l. Passing to the limit as tj+ + 00, we 
obtain that p (t,Q (t, 0, z*))> Ed > 0 for all t+ 0. But this contradicts the property 0 (f,$ (1, 
0,x,*)) 4 0 obtained above. Thus V(t,s (t, 1,, s,))+O uniformly with respect to (t,,s,), which 

proves the theorem. 

Theorem 2.5. Suppose that: 1) there exists a y-positive definite function IJ (t, t), v (t, 
z)> V,(IIYII) whose derivative by virtue of (1.1) is V (t, r) -< -w (t. .r) < 0. 2) t'(1, X) is 

such that N> 0 exists for any 8> 0 and any sequence (r") such that /I Y, II > 6 as 

IIz,~l+ fW3 and lim V(t,z,,)Z> N uniformly with respect to t, and 3) for any limiting pair 
(cp, o) the set M'((cp, o))C (r:'y = 0). The xero solution of (1.1) is then asymptotically Y- 
stable. 

Proof. Let 2 = x (t, t,, so)). where so T' r (to) (r (t):sup (V:(t, zj when .z E I'(t)) < inf (N, V, (H,)), 
HI(H), be the solution of (1.1). Then V (t, z (t, tO, zO)) < 8, = V(t,. x0)) < N. If we assume 
the existence or a sequence G, + + 00 for which II z U,,, to, 4 II -+ f 00 and II y (6,. to, 4 II > 6, > 
0, the inequality V(t,,,.z(t,,t,,z,))< VO<N contradicts condition (2) of the theorem. If, 
however, )I z (t,, t,, zO))) is bounded, the set of limiting points 8+ (x (t, tO, 2J) is non-empty. 
By virtue of condition (3), on the basis of Theorem 2.1 of /3/ we have S?(~(t,t,,,z~))C (.r:y = 
0). Hence, even when II z (t,,, t,, x0)11 is bounded, we have lim y (t,,t,,s,) = 0 as t,- + m. 

The following theorem can be proved similarly. 

Theorem 2.6. Let us assume that: 1) the function I'(t,.r) exists and, in an arbitrarily 
small neighbourhood of s=o, takes positive values, and is bounded in the region V(t,r) ‘I. 0, 
with a derivative which by virtue of (1.1) is v' (t..r)> W(t,s)> 0 and such that uniformly on 

t-limV(t,r)<O as 11 z II + + 00, and (2) a sequence t,-+ + co exists for which the limit- 
ing set N(t,c) and the limiting pair (qO, 0") are such that for any c,>O the set n- (t, 
c,,) fl {oO (t,z) = 0) does not contain solutions of the system I' = 'PO (1, I). The zero solution 

of (1.1) is then y-unstable. 
Thetheorems considered above generalize and develop the theorems on asymptotic stability 

and instability with respect to part of the variables with the Lyapunov function having a 
derivative of constant sign /5-g/. 

3. Consider a mechanical system with time dependent constraints, definedbytheLagrangian 
equations 

d S3L 
-Y 

i ) 
C+L 

dt 8q -F= Q (3.1) 

q = (q1, qa, * . .7 q,F, L = L + L + &I 

L, = ?‘s (q’P’A (1, q! q-9 L, = B= (q) q’, L, = Lo (t, q) 

(II q II* = 412 + C712 -I- . . . + Qn? 

where Q(t.q,q’) is the resultant of generalized gyroscopic and dissipative forces, and Q=.q’< 
0; aLlag 3 0, Q E 0 when (I' = q = il so that the system has a zero position of equilibrium 
q' 3 q S 0. 

Let us assume that L,,(t,O)= 0, aL/i%.> 0, so that for the derivative of the function L? - 

LO we have 
(Ll - L,)’ = --aLlat + Q=.q’ Q Q= .q’ 

We shall also assume that the quantitites A (t.9). aAl&, aAlaq, 3Blaq. aL,laq, Q are bounded and 
satisfy the Lipschitz conditions by all of their variables. The limiting equations for (3.1) 
then exist and have the form /3/ 

A,=q" + ((9') =C,q') -c {&=q') f F, = Q,, (3.2) 

F, (t, q) = lim 
l"-+- 

+ (& s t, q) 

For convenience we denote by PI (t) a function such that fir (t)> 0, &(t)>b,,> 0 when t E 
It,. t,, t VI (v > 0, t,,-t + a, trlrl - t, < p =const, by I% (t) a function such that B*'(t) 2~ 0, 
p?(t)> PO> 0 when f ~/[t,,,t,, +vl (when (v> 0, t,- + 00 condition t,,, -t,,<< is not satis- 
fied). 

Theorem 3.1. Assume that: 1) the function 1. = -L, (t, q) is positive definite relative 
to 91, 42. . ., qm (m < n), 3) the motions (3.1) from some neighbourhood of q’ = q = 0 are bounded 
by %,+I- . . . q,,, 3) there are no equilibrium positions outside the set (ql = qI = . . . = q,,, = I)}, 
and this property is non-degnerate, i.e. for any e> 0 a 6 = 6(e)> 0 exists such that 

11 aL,'aqII 32 6 when ql* + qzl + . + qniz > E, and 4) the dissipative forces are such that 

Q=.q' < - u (II q' II). The zero equilibrium Position (3.1) is asymptotically stable with respect 
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to q-7 q19 429 . . .? Pm. 

Theorem 3.2. Assum that: 1) the function V = -L,(t, q) is positive definite with respect 
to 91. q2, . . ., q,,,(m < n), 2) motions in some neighbourhood of q’ = q = 0 are uniformly bounded 
by qm+l, . . ., qnt 3) there are no equilibrium positions (3.1) on the set L,(t, q)<O and this 
property is non-degenerate,i.e. for any E> 0 ar? 6 = S(s)> 0 exists such that (1 aL&aqII Y S 

when L, (t, q) -< --E, and 4) the dissipative forces are such that QT.q’< -& (t)a(II q.11). The 
zero equilibrium position is then uniformly asymptotically stable with respect to q’,ql,qz,. ., 
en. 

If QT.q' < 4 0) a (Il(1'11)~ aen 9' = q = 0 is uniformly stable with respect to (go, qo') and 
asymptotically stable with respect to q’,ql,q,,. ..,qm. 

The proof of Theorems 3.1 and 3.2 follows from Theorems 2.1, 2.2, and 2.4. Theorem 2.5 
enables us to substitute conditions relative to L,(t.q) for the condition of boundedness of the 
solutions in Theorem 3.1. 

Theorem 3.3. If under conditions (l)-_(3) of Theorem 3.1 the conditions (2') is also 

satisfied for any 6 > 0 lim (-L,(t, q)) = N > 0 when ql” +qaL +... +qh2> 6 > 0 and - &+r i 
2 
Qm+z + f . f St? - +co uniformly relative to t, then the zero solution of (3.1) is stable with 
respect to q'and asymptotically stable with respect to ql,q,,...,qh. If the right sides of 
(3.1), solved for q”, are bounded, then q’ = q = 0 is asymptotically stable with respectto 

Q'. It was assumed in the preceding theorems that the quadratic part of the Lagrangian 
function L,is positive definite for all velocities, as is usually the case. Sometimes,,however, 
the properties of the motions of mechanical systems may be conveniently investigated in a 
system of coordinates in which L, degenerates, becoming positive definite not for all coord- 
inatevalueswithrespecttoall velocities /lo/. The question of stability in such cases was 
considered in detail in /ll/. 

Let us assume that L,(t,q,q’) is positive definite with respect to ql', q2*, . ., qk’ (k .: n) 
when q1 = q2 = . . . = qh = 0, and positive definite relative to all velocities when ql* +q2* + 
. . . + qm? >S 6 > 0. Then L, (t, q, q’) + + 00 when q12 + qz2 + . . + qma 2. 6, and n 

(4U f (clb+,)- + 

. . * +(q,,‘)‘+ +m uniformly with respect tu t. Hence on the basis of Theorem 2.5 we have the 
following theorem. 

Theorem 3.4. In the case considered here under conditions (1) -(4) of Theorem 3.1 the 
zero equilibrium position (3.1) is stable with respect to ql’, q2’,...,qk’ and asymptotically 
stable with respect to q1 ,q2....,qm. 

Remark 3.1. Theorems 3.1-3.4may be suitably extended to systems with partial dissocia- 
tion. For instance, Theorems 3.1, 3.3, and 3.4) hold, if instead of conditions 3) and 4) we 

have conditions 3' 1 QT.p’ < - a (((qi’)* + (qiI1)z + . i (qj')')"? (1 < i < j < n), and 4') the motions of 
the limiting systems (3.2) along which qi' ?Z qirl Z qitl Z TE ?I’ EO are contained in the set 
{ql = qI = . . ..= qm = 0). 

Example 3.1. The problem of partial asymptotic stability of the zero equilibrium position 
of a heavy material point moving on the surface I = (1 + t*) $2 was considered in /12, 7, 9/. 
Supplementing the data of these papers by using Theorem 3.3 and Remark 3.1 we can conclude 
that the equilibrium position z'= y'= x= y= 0 is stable with respect to J'. y' and y, and 
asymptotically stable with respect to y'and y under the action of forces Q,and Q,such that 
05 I' i- Q/Y’ < - 8, (:) ‘L (I Y’ I). 

Example 3.2. Consider a solid with a single fixed point. The centre of mass of the body 
lies on one of the principal axes of inertia, the t axis, in a uniform gravitational field of 

variable intensity g= g(L) >g,>O, and subjected to the moment of the force of resistance 

M = -k(t)""& of the medium (O is the angular velocity of the solid and o0 is the corresponding 

unit vector). The position of the solid in the inertial system of coordinates is defined by 
Euler's angles e,rp,v. The Lagrangian function 

L = L, + L,, 2L,= A ox2 + Boy2 + CO,== 
A (9. sin 0 sin cp + 6'~s cp)* + 
B (*'sin 9 ~0s 'p - 9'sin o)* f C (rp' J-9" cos tN2 

L, = - mg (t) (1 f sin 0 sin rp) 

where A.E,c are the principal central moments of inertia, m is the mass, and lo>0 is the 
coordinate of the centre of mass of the solid. The solid is in the equilibrium position when 

the I axis is directed vertically downward 
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It follows from Theorem 3.2 that under conditions g'(t) QO,k(r)= &(t)(i.e.k(t) a function of 

the type &(t)) is asymptotically stable with respect to O’,cp’,*“,& cp. In the more general case 

we take v = L,/g (t) + m~,(i +sinOsin cp) as the Lyapunov function. For small %, %, 0, its deriva- 

tive is 
v. = (- 2k (t) g (f) OX+1 -g' (t) (A%2 + BoyI + C%'))/2g* (0 < 

- 0, (t) 0-+1 

if the conditions 

I R’ 0) I < M, k W = PI (0 6’ <Q < 1) 
2k U) g w + &?’ (4 (-4, B, 0 >, B1 (:) (a = 4) 

are satisfied. 
Under these conditions, using Theorem 2.4 we obtain that the equilibrium position is 

uniformly asymptotically stable with respect to O.,rp',lp',%cp. 

Example 3.3. Consider the motion of a dynamically symmetric satellite whose centre of 
mass remains at one of the libration points of the restricted circular three-body problem /13/. 
As in /13 we denote by O,Z#Z the system of coordinates rotating with angular velocity Q about 
the z axis. The z axis passes through the attracting centres of &and MS of mass na, and ml. 
Point 0,coincides with the centre of mass m,andm,,and z1 and 2, are coordinates of M, and M,; 
2,1/,z= 0 are the coordinates of the centre of mass of the satellite pi=/mi,ri'= (z-zi)%+'$(i= 
1, 2) and A =B are its principal central moments of inertia , and 8,9,* are Euler's angles, 
introduced in the usual way. 

Ignoring the cyclic coordinate, we determine the Routh function 

R=R,$R*-W 
2R = A@‘* + rp’= sin*e)+2AQ$ sing8 + 
2a' 00s e + AR* hinr e -I_ 2cD COY e - 

3(C - A)sin’B $ pi ((z-xi) sin 11, - # c~sq)*/r,~) 
i=l 

Since BW/a0= SVlhp= 0 when 8=0, the motions of the satellite are steady /13/ 

8’ = 8 = 0, up’ = cOnst (3.5) 

where the axis of symmetry of the satellite is perpendicular to the orbital plane. 
The function Rt is positive definite only with respect to 8, but &-.$-IX when 1 sine I> 

6>0 and I$p'I-+co. The function W- Wb is positive definite only with respect to 0 only 
in the case of a point of rectilinear libration, if 

en-ASP>0 (C>A) 
CL-2 -A@+3 (C-A)(~~l/r~*+$.~ll/rf’)>O (C<A) 

and in the case of a point of triangular libration, if 

CP - A@ +(C --)y1(2~,+2p1,+d)lr'>0 (C<A) 
eR-~AARP-(C-A)y'(2~,+2~,-~)lP~>0 (C>A) 

(d = ((aa + PI)* + 3 (Pl - pt)?"? 

(3.3) 

(3.7) 

The equations of motion indicate that under conditions (3.6) and (3.7) there are no 
motions in the region (O<e<n) along which 8= const or o= comt. 

Using Theorem 3.4 and Remarks 3.1 , we come to the following conclusion. If the satellite 
is subjected to dissipative forces whose moments are such that 

Q, =O, Q& + Q,gVG - PI WY (C-h(f) sin*O(rp'ja) 

the set of steady motions (3.5) is asymptotically stable with respect to e relative to the 
perturbed motions of the satellite with initial conditions satisfying (3.6) or (3.7). 
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THE USE OF LYAPUNOV'S SECOND METHOD TO ESTIMATE REGIONS OF 
STABILITY AND ATTRACTION* 

V.G VERETENNIKOV and V.V. ZAITSEV 

A definition of the stability region is given by extending the properties 
of Lyapunov's definition of sets of sizable measure. Constructive theorems 
on estimates of regions of stability and attraction are obtained by using 
certain developments of Lyapunov's second method for a wide class of auto- 
nomous and non-autonomous systems that satisfy both the Lipschitz and 
discontinuous conditions. The usual requirements imposed on the functions 
used in investigations of the stability region are somewhat reduced. For 
example, the requirement that the functions and their derivatives should 
have fixed sign are omitted. 

1. Consider the equations of perturbed motion of the form 

x' = i (I, t), .r E I?" (1.1) - (I.$) 

By system (1.1) we mean an autonomous system, whose right side is f(x), whose vector function 

f (5) is such that the solution of the Cauchy problem in the region considered exists, is 
unique, and is continuous with respect to the initial conditions, excluding any arbitrarily 
small neighbourhood of singular points. For system (1.2) j =f(z)=C(R") and by Peano's 
theorem the integral curves can be continued to the boundary of any compact set, possibly in 
a non-unique way. In system (1.3) the single-valued vector function f = f(.r) is piecewise 
continuous. Among systems (1.3) with discontinuous single-valued right sides only those are 
considered for which each integral curve may be uniquely continued in the neighbourhood of any 
surface of discontinuity, and the number of such surfaces is finite. The vector function 

f=f(r, t) in system (1.4) is such that the solutions retain the properties of the solutions 
of system (1.1) mentioned above. 

The basic concepts and notation correspond to those used in /l/. In addition we shall 
introduce the upper right Dini derivative /2, 3/ denoted by D+V; the connected subset F of 
the semiaxis IlO,oo) such that p = [t,, Tl V [to, oo) (T = const) (when investigating the properties 

of attraction I; = It,, CO)), F,” = (x 1 V (x) = d); H$l =- (~1 z = Y (1, to, lo) A toe H”t ‘( “) = H,’ = {* i Ls (x) z-1 

c,)), c,, = const, and the integral curve y(t,tO, x,,) of the system considered under initial con- 
ditions zO, t,,. 

Let us assume that for the Lyapunov function c',zc' the following conditions are satis- 

fied: 
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